Ashun's 技術駅 Ashun's 技術駅
首页
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • Vue
  • 现代web布局
  • React
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 技术资源
  • 第一阶段

    • HTML
  • 第二阶段

    • JavaScript
  • 第三阶段

    • Vue
  • 第四阶段

    • 实战项目
  • 每周测试

    • 每周
  • 其他

    • Vue引入UI框架
    • Web前端面试
    • Vue3-resource
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 福利资源
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Ashun

前端界的小学生
首页
  • 前端文章

    • JavaScript
  • 学习笔记

    • 《JavaScript教程》
    • 《JavaScript高级程序设计》
    • 《ES6 教程》
    • 《Vue》
    • 《React》
    • 《TypeScript 从零实现 axios》
    • 《Git》
    • TypeScript
    • JS设计模式总结
  • HTML
  • CSS
  • Vue
  • 现代web布局
  • React
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 技术资源
  • 第一阶段

    • HTML
  • 第二阶段

    • JavaScript
  • 第三阶段

    • Vue
  • 第四阶段

    • 实战项目
  • 每周测试

    • 每周
  • 其他

    • Vue引入UI框架
    • Web前端面试
    • Vue3-resource
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 福利资源
  • 友情链接
关于
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • vue

  • vue3

  • es6

  • JavaScript

  • css

  • webpack

  • http

  • NodeJS

  • React

  • git

  • linux

  • typescript

  • algorithm

    • 01Algorithm
    • 02time_space
    • 03structure
    • 04stack_queue
    • 05Linked List
    • 06set
    • 07tree
      • 面试官:说说你对树的理解?相关的操作有哪些?
      • 一、是什么
      • 二、操作
        • 前序遍历
        • 中序遍历
        • 后序遍历
        • 层序遍历
      • 三、总结
      • 参考文献
    • 08Heap
    • 09graph
    • 10sort
    • 11bubbleSort
    • 12selectionSort
    • 13insertionSort
    • 14mergeSort
    • 15quickSort
    • 16BinarySearch
    • 17design1
    • 18design2
  • applet

  • design

  • 《Web前端面试》
  • algorithm
xugaoyi
2022-03-25
目录

07tree

# 面试官:说说你对树的理解?相关的操作有哪些?

# 一、是什么

在计算机领域,树形数据结构是一类重要的非线性数据结构,可以表示数据之间一对多的关系。以树与二叉树最为常用,直观看来,树是以分支关系定义的层次结构

二叉树满足以下两个条件:

  • 本身是有序树
  • 树中包含的各个结点的不能超过 2,即只能是 0、1 或者 2

如下图,左侧的为二叉树,而右侧的因为头结点的子结点超过2,因此不属于二叉树:

同时,二叉树可以继续进行分类,分成了满二叉树和完成二叉树:

  • 满二叉树:如果二叉树中除了叶子结点,每个结点的度都为 2

  • 完成二叉树:如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布

# 二、操作

关于二叉树的遍历,常见的有:

  • 前序遍历

  • 中序遍历

  • 后序遍历

  • 层序遍历

# 前序遍历

前序遍历的实现思想是:

  • 访问根节点
  • 访问当前节点的左子树
  • 若当前节点无左子树,则访问当前节点的右子

根据遍历特性,递归版本用代码表示则如下:

const preOrder = (root) => {
  if(!root){ return }
  console.log(root)
  preOrder(root.left)
  preOrder(root.right)
}
1
2
3
4
5
6

如果不使用递归版本,可以借助栈先进后出的特性实现,先将根节点压入栈,再分别压入右节点和左节点,直到栈中没有元素,如下:

const preOrder = (root) => {
  if(!root){ return }
  const stack = [root]
  while (stack.length) {
    const n = stack.pop()
    console.log(n.val)
    if (n.right) {
      stack.push(n.right)
    }
    if (n.left) {
      stack.push(n.left)
    }
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 中序遍历

前序遍历的实现思想是:

  • 访问当前节点的左子树
  • 访问根节点
  • 访问当前节点的右子

递归版本很好理解,用代码表示则如下:

const inOrder = (root) => {
  if (!root) { return }
  inOrder(root.left)
  console.log(root.val)
  inOrder(root.right)
}
1
2
3
4
5
6

非递归版本也是借助栈先进后出的特性,可以一直首先一直压入节点的左元素,当左节点没有后,才开始进行出栈操作,压入右节点,然后有依次压入左节点,如下:

const inOrder = (root) => {
  if (!root) { return }
  const stack = [root]
  let p = root
  while(stack.length || p){
    while (p) {
      stack.push(p)
      p = p.left
    }
    const n = stack.pop()
    console.log(n.val)
    p = n.right
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 后序遍历

前序遍历的实现思想是:

  • 访问当前节点的左子树
  • 访问当前节点的右子
  • 访问根节点

递归版本,用代码表示则如下:

const postOrder = (root) => {
  if (!root) { return }
  postOrder(root.left)
  postOrder(root.right)
  console.log(n.val)
 }
1
2
3
4
5
6

后序遍历非递归版本实际根全序遍历是逆序关系,可以再多创建一个栈用来进行输出,如下:

const preOrder = (root) => {
  if(!root){ return }
  const stack = [root]
  const outPut = []
  while (stack.length) {
    const n = stack.pop()
    outPut.push(n.val)
    if (n.right) {
      stack.push(n.right)
    }
    if (n.left) {
      stack.push(n.left)
    }
  }
  while (outPut.length) {
    const n = outPut.pop()
    console.log(n.val)
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# 层序遍历

按照二叉树中的层次从左到右依次遍历每层中的结点

借助队列先进先出的特性,从树的根结点开始,依次将其左孩子和右孩子入队。而后每次队列中一个结点出队,都将其左孩子和右孩子入队,直到树中所有结点都出队,出队结点的先后顺序就是层次遍历的最终结果

用代码表示则如下:

const levelOrder = (root) => {
    if (!root) { return [] }
    const queue = [[root, 0]]
    const res = []
    while (queue.length) {
        const n = queue.shift()
        const [node, leval] = n
        if (!res[leval]) {
            res[leval] = [node.val]
        } else {
            res[leval].push(node.val)
        }
        if (node.left) { queue.push([node.left, leval + 1]) }
        if (node.right) { queue.push([node.right, leval + 1]) }
    }
    return res
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# 三、总结

树是一个非常重要的非线性结构,其中二叉树以二叉树最常见,二叉树的遍历方式可以分成前序遍历、中序遍历、后序遍历

同时,二叉树又分成了完成二叉树和满二叉树

# 参考文献

  • https://baike.baidu.com/item/二叉树 (opens new window)
  • http://data.biancheng.net/view/27.html (opens new window)
编辑 (opens new window)
上次更新: 2023/08/06, 00:38:41
06set
08Heap

← 06set 08Heap→

最近更新
01
课件-react路由-V6
01-22
02
课件-国际化
01-22
03
课件-redux-toolkit
01-22
更多文章>
Theme by Vdoing | Copyright © 2019-2024 Evan Xu | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式